8 Filling In and Forecasting DSM2 Tidal Boundary
Stage

8.1 Introduction

An adequate characterization of stage at Martinez is critical in order for DSM2 to
simulate delta dynamics accurately. This section discusses a method of modeling
Martinez stage, applicable to short-term prediction and the filling of historical records.
The model combines atraditional astronomical tide with amodel of the residual tide (the
part of the observed tide that is not explained by an astronomical model).

8.2 Data and Preliminary Observations

A comparison of the bay tides with astronomical tides provides an interesting
introduction to the boundary stage estimation problem. [Figure 8-1]shows the tide at
four stations: San Francisco Presidio, San Pablo Bay (RSACO045), Martinez (RSAC054)
and Mallard (RSACO075). A harmonic mean tide has been fit to each of the stations:

z(t) = ZN: fia; cos(wt + ¢ +u)

i=1

where z(t) is the harmonic mean tide, w are known frequencies associated with
astronomical motion, ¢ isalocal phase, and f, and u, are slowly varying amplitude and

phase adjustments attributabl e to the 19-year-cycle of the lunar node, as tabul ated by the
National Ocean Service (see Schureman, 1941).

The choice and the number N of constituents came from the standard NOS menu of 37
common constituents. In accordance with traditional NOS practice, constituents that had
estimated amplitudes smaller than 0.03 feet were dropped — this may err toward over-fit,
which is acceptable because the predictors are orthogonal and any “extra’ coefficient
estimates do not tend to hurt the “significant” ones. The final selection was slightly
different for each station — between 21 (RSACO075) and 28 constituents (RSAC054) were
retained per station. Many common constituents were used in al of the fits (the most
important were M, K1, S;, N, Oy, Mf, (L2), Ssa, 2MKj;, and 2SM,). The differences
were in minor species and shallow water constituents, all of which had small amplitudes
afew hundredths above the “ cutoff” of 0.03 ft. Fewer species could be fit to RSACO075
than to RSAC054, despite RSACO75 being higher in the estuary where more shallow
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water species have had a chance to develop. This suggests that distortion and noise play
alimiting role on harmonic fits higher up in the estuary.

San Francisco

Stage in feet
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San Pablo RSAC045Z7
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2 0 2 4

11840 11841 11842 11843 11844 11845

Martinez RSAC054Z7

Stage in feet
2 0 2 4

11840 11841 11842 11843 11844 11845

Chipps Island RSAC075Z
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Julian date starting 06/01/1992

Figure 8-1: Tides (solid) and astronomical fits (dashed) at four stations.

Figure 8-2|(a) compares observed tide to astronomical over asingletidal cycle.
B-2|(b) shows the astronomical residue over afourteen-day cycle beginning on the same
day, and [Figure 8-3|compares the residuals at four stations. Two features are striking.
First, there are local “trends’ with period from several days to several weeks, often with
magnitudes of afoot or more. On the right plot of [Figure 8-2|long-wave variation is
about one foot up over ten days (which is not an extreme example). The main physical
contributors to these trends are barometric changes and 14-29 day oscillations induced by
the interaction between lunar and solar constituents.
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Figure 8-2: (a) Tidal distortion (solid observed vs. dashed astronomic) at Martinez
over one tide cycle; (b) tidal residue during a 14-day spring-neap cycle.

The second source of error isthat the tide is distorted (from sinusoidal) asit travels
upstream, because of bottom friction, circulation in bays and effects induced by the shape
of the basin. The episodes of greatest distortion cause instantaneous errors of about one
foot at Martinez, and the complexity of the error devel ops as the tide moves upstream.
Distortion is often manifest as patterns or “slivers’ between the harmonic and observed
tides (asinthecircleinset in , which last for several days. Common patterns
are periodic, but recalcitrant to deterministic modeling — the patterns sometimes
disappear and reappear for months at atime under circumstances which are sometimes
not easy to tie to an external cause (season, delta outflow, pressure etc.).
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Figure 8-3: Residua tide at four stations (stage minus astronomical estimate).

8.3 VAR Tide Residue Model

8.3.1 Background in Linear Tide Models

The simplest method of linking tide observations at severa stationsisthe linear model or
convolution filter. Munk and Cartwright (1966) used linear (and quadratic Volterra-type)
filtrations of an astronomical forcing function to produce tide predictions, and the same
approach could be adapted to model one station on another in the estuary. Thetime
domain representation of an appropriate filter model can be lengthy. For their
application, Munk and Cartwright used afilter with lags spaced at At = 2daysin atwo-
sided filter spanning from -6 to +6 days, (thirteen terms). Their design was based on
“equilibrium” tidesfiltered into narrow tidal bands. If their reasoning and spacing
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criteriawere applied to the full tidal spectrum (say 0 to 3 cycles/day), 4-hour spacing
would be required over thirteen days.

Coefficient error and the short-term nature of shallow water distortion make afilter of
such size unattractive for the present application. In amodel of Martinez tide on San
Francisco or San Pablo tide, 1-2 hour spacing over a maximum of 27 hours yielded much
better fit (based on a Bayes Information Criterion) than did longer or more widely spaced
filters. The only really important terms seem to be afew lagsin the immediate past and
another couple from the previoustidal day. Unidirectional filtration (modeling upstream
stations on downstream) worked better than spatially two-sided filters, despite some bi-
directionality in the underlying physical processes.

Removing the astronomic tide from the original tidal seriesimproves the performance of
the filtering approach and allows the use of a shorter filter. For instance, the best linear
filter model of Martinez on San Francisco has a standard error of 0.27 feet if the full
seriesis used; if instead residuals are used, the error isonly 0.20 feet. It has been argued
that with atrue linear system, the decision as to whether to pass the mean tide through the
filter or removeit and add it back later is arbitrary. This argument, neglects the effects of
estimation error in determining the filter. When the mean tide is removed beforehand
(eliminating line spectra), a much less complicated filter is required for the residuals and
thus fewer filter coefficients have to be estimated.

For the remainder of this report, the astronomical tide will be taken to be an exogenous
predictor —in other words it has already been computed before the rest of the analysisis
carried out. An alternate approach would be to estimate the astronomical and residual
components simultaneoudly. It isthe author’s experience from tinkering with the model
that the residual model is not particularly sensitive to the astronomical model, and this at
least is partial, informal confirmation of exogeneity. More detailed is deferred to later
work.

8.3.2 Vector Autoregressive Model

Having made the above preliminary arguments, it is possible to specify a model that
performswell. The model is avector autoregressive (VAR) model based on astronomical
residuals.

Because distortion appears to develop in an upstream direction, each station is modeled

on its own past plus that of its downstream neighbor (except San Francisco, which is
purely autoregressive), i.e.:
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Zl(t) = Cua1 Zl(t _1) +C1,1,221(t _2) to +C1,1,27Z1(t _27) +£1(t)

zZ,(t) = C2,1,121(t -1 +... +C2,1,2721(t - 27) +C21% (t-1) +... "'(:2,2,2722(t —27) +€,(t) (0.2)

Z4 (t) = (34,3,123(t -1+ "'04,3,2723(t -27) +Cha124 (t-1) +..+ Ca42724 (t-27) + 54(0

wherethe z(t),i =1...4, respectively, represent water levels at the four stations San

Francisco, San Pablo Bay (near the Carquinez Bridge), Martinez and Chipps
|sland/Pittsburg and the ¢ ;, are coefficientsin equationi of the jth station at lag k. The

error terms &, are assumed to be Normal, to have a covariance matrix Q, which includes

correlation between stations but is independent and invariant over time (adequacy of the
Normal model will be assessed shortly). The formulation of Equation(0.2)]is general, but
in practice only subsets of lags 1, 2, 3, 24, 25, 26, and 27 hours were found to be useful
(using the Bayes Information Criterion, or BIC).

Coefficient estimates were obtained using Gaussian maximum likelihood, conditional on
thefirst 27 hours of data. Given a complete tidal record, the likelihood cal culations are
equivalent to regressing each station on its own past lags and those of its downstream
neighbor; i.e. fitting Equation [0.2)] by least squares. The matrixQ is estimated by:

X GEUN (0.3)

~ 1
Q==
T=

wherethe £(t) represent one-step prediction errors.

Coefficient estimates are given in The errors estimated from the constituent
regression cal culations were three to four orders of magnitude smaller than the
coefficients. These regression estimates are not valid error estimates for the problem, but
suggest that the coefficient estimates are “tight” and that significance is not an issue for
the lags employed. Formal estimates of coefficient error were not made because such
estimates are not a natural product of the EM algorithm (see below). The models have
changed dlightly in real-time applications because RSAC045 in the San Pablo Bay isno
longer monitored.
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S.Francisco |S. Pablo Martinez Chipps Is.

lag |onself SFterms  San Pablo |San Pablo Martinez |Martinez  Chipps Is.
1 0.713 0.303 0.722 0.233 0.8+4 0.442 0.890

2 0.203 -0.047 -0144f -0118 -0.32

3 0.108

24 0.302 0.255 0.290 0.291

25 0.186 0.398 0366 -0.185 0.346

26 -0.206 -0.208 -0.3H4 0225 0439 -0124 -03%

27 -0.219 -0.034 0.060 0.072

Table 8-1: VAR modd coefficients.

8.3.3 Missing Data

Missing data complicates the likelihood calculation (the fairly smple least squared
problem described above). A significant fraction of the historical records at the tidal
stations are missing — about 15-25 percent of the observations at San Pablo Bay, Martinez
and Pittsburg. Since each “squared error” expression in the likelihood involves several
stations and lags, any one of which could be missing, the fraction of expressions affected
by missing datais very high indeed. Fortunately, many of the data are “missing at
random,” which means that the reason the data are missing is administrative or
mechanical and is not directly related to the quantity being measured.

This section outlines how the missing data were treated using the EM agorithm. The EM
(Expectation-Maximization) algorithm is an iterative numerical method for Maximum
Likelihood Estimation (MLE), in which the original data are supplemented by “added”
data or variablesto form a*“complete’ dataset. The added data are chosen in such away
that calculation of the likelihood using the complete datais easy. The added “data” are
often in contrived forms.

The EM algorithm iterates between two steps:

E: calculate the expected value of the “complete” (log) likelihood
expression using parameter estimates from the last iteration (or a
starting value). Often, the likelihood expression is linear in the “added”
data, in which case the E-step is equivalent to:

I using the model to cal cul ate the expected values of the “added”
data necessary to “complete” the data set, and

ii. inserting the expected value of the “added” datainto the
expression for the likelihood.
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M: maximize the “complete” likelihood expression from the E-step with
respect to the parameters. Inthe VAR model thisisjust least-squares
for the coefficients plus the estimate of Q, as described above.

The naive implementation of thisideawould be to use the VAR to estimate missing stage
residue observations, use the estimates to “complete’ the historical record, and then re-
estimate the VAR model. Thisturnsout not to be an EM algorithm or even a good idea.
Why? Thelikelihood is not linear in the raw stage values, but rather in sums of squares

and cross-products — termsthat look like zz; (i and j don’t have to be distinct). In

standard regression terminology, these are the terms usually denoted as X'y (or X'Y)

and X"X. See Mardia (1979) for the applicable equations or Hamilton (1994) for the
application of the likelihood to VAR models. Because the likelihood is not linear in the
tide residue, substitution of even a good, unbiased estimate of the tide residue into the
likelihood does not give an unbiased estimate of the likelihood.

Instead, we should choose our “added” datato be the missing cross-products. Here,
“missing cross-products’ refers to products that are needed for the likelihood but cannot
be calculated because they involve at |east one piece of missing data. The problem, then,
isto calculate the expected value of cross-products.

In the case where both contributors to the product are missing, recall this basic identity
for covariance:

E(zz)=E(z)E(z) +Cov(z7) (0.4)

wherei and j represent times or stations and are not necessarily distinct, in which the
covariance is avariance. The left side of Equation [0.4)]is the “expected value of the
product,” which iswhat we want. The first term on the right sideis the “product of the
expected values.” The second term on the right is the covariance between the two
observations. Thisisthe term that would be neglected under the “naive” scheme. The
covariance term tends to be particularly important for cross-products involving
neighboring stations and time steps. Thisis usually the case. Cross-products arising
from the least-squares fit of Equation involve highly correlated lags and stations,
and the missing data often occur in groups involving contiguous blocks of time or
stations administered by the same agency.

In the simpler case, when cross-products involving one missing piece of data, the
equivalent expressionis:

E(zz)=E(z)z (0.5)

Since z; isknown, it just acts asa scalar. In this case covariance does not come into play
and the expression islinear inE(z).
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The expectations of cross-products can be calculated using Equation [0.4)]or [0.5)Jusing
stage estimates and covariance estimates. To get both, the VAR model is put in state
space form, and a Kalman filter and Kalman (Rauch-Tung-Striebel) smoother are used to
produce the stage observations, cross-covariance and squared error terms conditional on
al thedata. Since the Kalman filter/smoother is used implementing the VAR model for
historical filling, the EM a gorithm can be employed without production of tools that
would be of no further use once the parameter estimation isfinished. The Kaman filter
is not discussed further here — it is a computational device discussed in detail in any book
on linear systems or state space modeling. See, for instance, Harvey (1994) or Hamilton
(1994). The details of using the Kalman filter to obtain cross-covariance termsfor usein
EM are discussed in Watson and Engle (1983).

The use of the EM a gorithm makes the VAR fitting complicated, and this process was
never automated. Should the VAR model be refit later due to a change in circumstances
(e.g., achangeinthelist of available stations), it would probably be adequate to use a
least squares fit to Equation plus Equation using whatever data are available.

It is certainly better to just throw away time steps whose expressions involve missing data
at any lag than to implement an ad hoc iterative scheme in which the covariance between
observationsisignored. Aslong asthe dataare missing at random, throwing out missing
data still leads to an asymptotically efficient estimator.

8.3.4 Diagnostics

Rudimentary diagnostics were carried out to assess the “whiteness’ and Gaussianity of
the innovations process of the VAR model. The empirical autocovariance at Martinez of
one-step prediction errors is shown at the top of along with a 95 percent
confidence interval around zero (assuming a stationary Gaussian process). Residual
periodicity is evident, but is much smaller than that of alternative filter lengths and
spacing considered.

The bottom of [Figure 8-4]is a distributional (g-¢ normal) plot based on 4,600 one-step
prediction errors; there is little evidence of severe skewness or thick tails which would
indicate that a normal distribution (and least squares) is inappropriate. Nevertheless, Chi-
squared (p-value 0.0038) and two-sided Kolmogorov-Smirnoff tests (p-value of 5.0E-4)
reject the hypothesis that the residuals are Gaussian, even after trimming afew outliers.
Such results are typical because of the high power of goodness-of-fit tests based on large
data sets— with so much dataiit is easy to prove that the data are not perfectly normal.
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Figure 8-4: Diagnostics of the innovations process at Martinez. (Top) Empirical
autocovariance. (Bottom) Quantile comparison with normal distribution.

8.3.5 Tide Series Reconstruction and Interpolation

After the residue has been predicted or filled, the final step isto add back the
astronomical tide. The VAR component of the model (the part that works on the residue)
operates on a 1-hour time step. To recover a 15-minute series for use in DSM2, the steps
are asfollows:

1. Interpolate the 1-hour estimate of the residue to 15-minutes, and
2. Add theresult back to a 15-minute astronomical forcing.

Notice that only the “small” residual part isinterpolated between the hours. The rest of
the “shape” comes from the astronomical prediction, which can be resolved at any time
step desired. Interpolating the hourly tide in this order is accurate, causing about ~0.01
foot error between the hour. Two alternatives would be to reconstruct the seriesfirst at a
1-hour time step and then interpol ate the whole series, or to just reconstruct it at 1-hour
and let DSM2 do the interpolating later. When linear interpolation is used, these
alternatives are equivalent and result in errors at peaks of more than 0.1 foot, whichis
enough to spoil the accuracy of historical filling. Higher order interpolation is possible
off-line, but not in DSM2.
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In the production version of these tools, a fourth-order monotonicity-preserving spline
due to Huynh (1993) was used for the interpolation, resulting in a more accurate and
more visually pleasing series.

8.4 Applications

8.4.1 Prediction

The primary role of the VAR model in real-time modeling is to predict future stage.
Predictions are produced by recursive application of the VAR Equations[(0.2)|to the tide
residue with the error term set to zero. In practice, the synthesis of the VAR model is
carried out with a Kalman filter, which is capable of producing variance estimates as well
asamean forecast. The Kalman filter is also required as the part of the historical filling
algorithm. See Harvey (1994) or Hamilton (1994) for a discussion of how a vector
autoregressive model is expressed in state space form for implementation in a Kalman
filter.

S
T

10540 10541 10542 10543 10544 10545 10546
Time in days

Figure 8-5: Errors and 95 percent confidence bound for ssmulated prediction using
the VAR residue model (note sign: expected minus observed).

Figure 8-5)shows the resuilts of simulated short-term forecasting at Martinez. All station
records were artificially terminated at Julian date 10541 (November 10 1988-89). Until
this point, the prediction errors and 95 percent confidence bounds represent one-step
prediction error; after the cutoff date, the prediction error accumulates. Every tidal day, a
discontinuous increase occurs in the confidence bounds, as real observations are replaced
by estimates in the lagged components of the model. The confidence region is point-
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wise: the probability of error continuously following the envelope is much smaller. The
errors are reversed in sign from the usual for residuals (they are model minus observed).

The prediction error shown in [Figure 8-5]takes on its worst values in the middle of Julian
day 10,544. This can be explained in terms of long-period “trend” on that day.
showstidal ly averaged stage for the period. An unanticipated event occurred several
days into the prediction period, causing water surface elevationsto rise. Thisevent isnot
captured in the VAR model, which can “remember” eventsthat are in progress at the time
of prediction, but cannot anticipate new barometric events. The attenuation portion of the
event is captured well by the VAR model (asis a period of further attenuation not
pictured). Further consideration of barometric eventsis given shortly; this example—a
new event beginning soon within the prediction period —will be cited as a“tough case”.
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Figure 8-6: Tidally filtered stage during the smulated prediction period.

8.4.2 Filling missing records

The ability to fill historical recordsis a strong point of the VAR modé (it was originally
designed for this purpose), but is atask of only secondary importance in real time
modeling. What distinguishes the filling (smoothing) problem is that supporting
information is available from other stations. Since low-frequency fluctuations are felt
fairly uniformly over the whole delta, the algorithm does well even during extreme
events.

Although the same VAR formulation is used for prediction and filling missing records,
the filling problem involves more complicated “ smoothing” calculations. Thisis because
we want to condition our estimate on all data available, which will include data before
and after the historical gap. A single recursion marching forward in timeis not sufficient,
because later observations will not be used to improve earlier estimates. Instead, we need
to make use of a bi-directiona algorithm, and the one used hereis aforward Kalman
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filter coupled with afixed-interval backward Kaman smoother (see Harvey, 1994). The
result is an estimate for each missing value based on all available data.

Figure 8-7]shows errors resulting from two examples of simulated data filling, in which
artificial gaps were created in the Martinez record. In series (a), which comes from the
same period as the prediction problem of last section, Martinez goes off-line for two
days. During the middle of this period San Pablo also goes off-line for severa hours,
causing abump in the confidence interval. Note that the event that caused an episode of
high error in the prediction problem is not even detectable in the filling problem.

oL . . T T T T

10540 10541 10542 10543 10544 10545 10546
(@) Time in days

o

2]

o

S

10592 10593 10594 10595 10596 10597 10598
(b) Time in days

Figure 8-7: Errors for the smoothing of simulated gaps, plus 95 percent confidence
bounds.

The main difficulty in filling data for real-time use seems to be the lack of supporting
station data. Station RSACO045 was recently dismantled or moved. The lack of
supporting station data will not matter much for small gaps, when the auto-regressive
Martinez component does most of the work, but will make the model less accurate for
long gaps. The San Francisco Presidio station is always available, and can be relied upon
to pick up long wave events such as storms, but does not include information about
shallow water distortion higher in the estuary.

Series (b) isasynthetic gap preceded by a month-long real gap in the Martinez record,

and thus the model operates without autoregressive information from this station. San
Pablo was also off-line at the beginning of the plot, coming on-line just before Julian day
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10,595. Even during the worst long gaps, the smoothed Martinez record has a standard
error of less than one tenth of afoot and a 95 percent confidence bound of about
two-tenths of afoot. Thislevel of accuracy has been verified with cross-validation over a
large number of artificial gaps (every other week in 1996-1997), including episodes of
moderate to high winds.

8.5 Discussion
8.5.1 Atmospheric Events

Correspondents who inquire about the stage boundary model are usually concerned with
performance during atmospheric anomalies. The VAR model does not explicitly include
barometric input, though the addition of such aterm is a possibility for future
development. Under most circumstances, the VAR residue model can perform just as
well asamodel that includes atmospheric terms. Thisistruein the following situations:

o Any historical filling scenario:
Stationsin the Delta respond very similarly to low-frequency events (lower than 1
cycle per day). For thisreason, stage data at supporting stations give us almost all the
low-frequency information required for Martinez. To illustrate the similarity between
stations, [Figure 8-8]shows the Martinez (RSAC054) and San Pablo (RSAC045)
tidally-averaged stage during December 1995, one of the biggest wind eventsin
recent history. Thetwo stationsrise and fall neatly in unison. The distance between
the two curves (shown as a separate line in the plot) varies only 0.04 feet in each
direction from aflat line, at the height of the event. Describing the effect of such an
event at Martinez to this precision using a causal model between atmosphere and tide
would be out of the question.

o Prediction made near the peak of an atmospheric event (point (c) on [Figure 8-8):
The VAR model captures and attenuates most events, aslong asthey are “in
progress’ at the time the prediction is made.

o Prediction made many days before the onset of an atmospheric event (point (a) on
Figure 8-8):
In this case, the atmospheric effects cannot be predicted at al. Thus, thereis no way
that atmospheric information can be put into the model successfully even if there
were aterm to accommodate it.

o Seasonal atmospheric characteristics (e.g. summer winds):
The effects of the current season are manifest in the residual at the start of the
prediction and areimplicitly “in the model.” Of course, this assumes that the VAR
model is used to predict over an interval that is short compared to the length of the
season.
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Figure 8-8: Tidally filtered stage during a mgjor atmospherically-driven event.

Where improvement of the model is possible iswhen a prediction is made severa days
before an important, forecastable atmospheric event, asin point (b) on|[Figure 8-8](recall
that this was the case in the earlier example shown in|Figure 8-5). The author is
investigating the relationship between stage changes and barometric forecasts to seeif the
inclusion of a pressure term is warranted.

8.5.2 14-Day Cycling

A nonlinear interaction between solar and lunar constituents excites oscillations with a
period of just over 14 days (this interaction is not the same as the “ spring-neap” cycle,
which isalinear interaction, but tends to be synchronized with this cycle). The
oscillations are largely responsible for the “filling and draining” of the Deltawhich has
been observed to be important in salinity transport. Oscillations of this periodicity are
handled in equilibrium tide theory, standard NOS and DWR models, and in the model
presented above inasmuch as they are captured in long-period constituent Mf.

Figure 8-9shows low-passed stage over six months for RSAC054. Two-week cycling is
apparent, but a sinusoidal representation seems unsatisfactory. In fact the Mf harmonic
term fit to the full record (on stations where it was deemed significant) has an amplitude
of about 0.1 foot, which means that it is not picking up variations of the magnitude that

are obvious from inspection of

An aternate way of incorporating the 14-day term isto absorb it as acyclical
autoregressive part of the model. From [Figure 8-9| we can see that characteristics tend to
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repeat between adjacent two week cycles and this would be represented using standard
VAR or ARMA terms—acommon practice in seasona hydrologic models (Bras, 1993).
suggests that the improvement in medium-term prediction accuracy (forecasts
of 14-20 days) might be as much as a half afoot. The downside to including 14-day
periodicity isthat the model will become much larger and more cumbersome.
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Figure 8-9: Tidally averaged stage at Martinez over six months.

8.6 Conclusions

Adding atide residue model to augment ordinary astronomical models increases the
quality of prediction and smoothing. The VAR model suggested here producesfill-in
(smoothed) values that are extremely accurate, regardless of events which take place
during the fill-in period. The model aso improves prediction of tides, with the largest
improvements during the first week. Both types of estimates tend to have close to zero
error when compared to the observed data, so that the transition between real and
estimated data is smooth.

This section has al'so examined two potential shortcomings of the VAR approach. The
first isthat the VAR does not employ a causal representation of atmospheric forcing on
tides. This affects accuracy if the prediction is made just before the onset of a
foreseeable storm. In amost all other situations involving astronomical events, it has
been shown why explicit consideration of such forcing cannot benefit the model.

The second shortcoming of the VAR approach isthat it uses a naive representation of

14-day period variations. These oscillations are not really sinusoidal and attempts to
model them as such usually fail to capture their full amplitude. A possible remedy for
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this shortcoming isto include a cyclical but slowly varying 14-day term in the VAR
model. Thiswill improve medium forecasts.
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